
Portable Information Devices – Service Discovery

J. Kadirire
Anglia Ruskin University

Victoria Road South
Chelmsford CM1 1LL

Abstract

This paper looks at how portable information
devices (PIDs) can automatically discover
services online and use those services. A specific
service example used in this research is a
printing service, although the service can be
anything that one cares to define. Quite often,
PID users receive documents via emails which
they can access directly or notification of some
documents like word documents or via text
messages. Their PIDs may not have the
capability to download and display those
documents and if they need to read those
documents urgently, one possible way is to
download and print them in their vicinity. For
this to happen, the PIDs need to be able to
discover services like a printing service and the
Jini technology makes this possible by providing
spontaneous networking.

I. INTRODUCTION

The Internet and the World Wide Web
(www) have been growing at a phenomenal
rate and the world is slowly turning into an e-
World, where most things are done online.
With 1.52 billion mobile users world wide, as
of September 2004 [1], mobile devices like
mobile phones and portable information
devices (PIDs) are now ubiquitous and access
to services online via PIDs is common place.
PIDs and mobile phones are sometimes
indistinguishable in their functionality and are
being put into use in different aspects of our
lives, not least making phone calls, accessing
online resources, sending messages and even
being used at conferences [2], and in education
for e-Learning[3]. However, more needs to be
done in terms of service discovery.

Although PIDs are ubiquitous, with many
benefits to users, they present a new set of
difficulties for developers [4]. One difficulty is
connecting these devices into a network. Small
consumer devices demand a flexible, resilient
networking architecture so that consumers can
use PIDs to exchange information with
existing networks and other computers. Sun
Microsystems have introduced a java runtime
environment called KVM, [5] for embedded
devices, and the Jini technology [6], which
provides a flexible, resilient network

architecture to easily link together small
computer devices onto a network, making
application portability and code reuse possible.

Quite often, PID users receive documents via
emails which they can access directly or
notification of some documents like word
documents or html documents via text
messages. Their PIDs may not have the
capability to download and display those
documents and if they need to read those
documents urgently, one possible way is to
download and print them in their vicinity. For
this to happen, the PIDs need to be able to
discover services like a printing service and
the Jini technology makes this possible by
providing spontaneous networking.

The idea of spontaneous networking with
Jini is that if a Jini enabled printer is plugged
into the network, it automatically joins the
network. When a client joins the network, it
automatically discovers the Jini enabled printer
and can make use of that printer without
installing any software or configuring the
printer. If the client needs any software to use
the printer, the software will be automatically
downloaded from the printing service [7],[8].
Any network resources needed by the client to
use the printer will be automatically provided
and as soon as the client’s job is printed, the
network resources are again automatically
reclaimed and freed for use by other clients.

Jini is making this need to easily access and
use network resources from mobile devices
realised, by introducing new network
capabilities like spontaneous networking,
automatic configuration via protocols and
application programming interfaces (APIs) that
enable more robust and reliable distributed
systems to be built [9]. Here is a scenario for
spontaneous networking. Currently, if one
needs to print a document, a network printer
needs to be connected to the network, device
drivers need to be installed and configured and
permission probably needs to be obtained from
the network administrator to use the printer.
The idea of spontaneous networking with Jini
is that if a Jini enabled printer is plugged into
the network, it automatically joins the network.
When a client like a PID joins the network, it

automatically discovers the Jini enabled printer
and can make use of that printer without
installing any software or configuring the
printer. If the PID needs any software to use
the printer, the software will be automatically
downloaded from the printing service [7], [8].
Any network resources needed by the PID to
use the printer will be automatically provided
and as soon as the PID’s job is printed, the
network resources are again automatically
reclaimed and freed for use by other clients.

The rest of this paper is organised as follows:
Section II describes the design of the Printing
Service for the Palm V PID and how the
service discovery is accomplished. Section III
looks at the results of doing a service
discovery and printing a document. Sections
IV and V look at the discussions and
conclusions, respectively.

II. PRINTING SERVICE DISCOVERY
BY THE PALM V PID

Increasingly, online services are becoming
more personalised and mobile. Fig. 1 shows
the architecture of the Jini Printing Service for
the Palm V PID. It consists of a distributed
Jini network (Djinn) which uses a lookup
server, a Palm V PID coupled with a proxy
device to form a client, and a printing service.
The Palm V has a small limited java virtual
machine called the KVM, running on it and
this KVM only supports basic sockets and
input/output streams. This necessitated the
need to develop the proxy which sits on the
network and is Jini capable.
So, the printer service defines an interface
which it registers with the lookup server. The
proxy receives commands from the Palm V
PID to print some data using a basic private

Print Proxy

1. Register Printer Service
with Lookup Service

4. Send document to printer using methods
on the service object

2. Find Lookup
Services

3. Download Printer
Service proxy

Printer service

Lookup Service with
list of ServiceItems

Client

5. Print document

Fig. 1. Network for the Palm V PID Printer Service

protocol. The idea of a proxy that’s Jini
capable is very powerful as it allows mobile or
indeed any network devices, with or without a
java virtual machine to use the Jini protocol
and APIs. When the proxy receives the data to
print, it stores the data into a file on its local
file system, and then proceeds to do multicast
discovery [9] to look for lookup servers on
which the printing service is registered. When
it finds the lookup server(s), it downloads the
service proxy which enables it to talk via RMI
[10], to the backend printer service. This proxy
object has methods defined on it, e.g. print()
and by invoking this print method, the file is
downloaded and printed on the service side
using the default printer on which the printing
service is running. When the printer service
proxy is downloaded by the Palm V PID
proxy, the lookup server is effectively out of
the picture and communication takes place
directly between the Palm V PID proxy and
the Printer Service via RMI. The printing
service is always registered on the lookup
servers by making sure that a lease [11] is
granted at the point of registration and
constantly renewed before it expires.

III. RESULTS

To start the Printer Service, a number of
things had to be done in the following order.
1. The RMI daemon was started first.
2. The web server from which the java

classes were served when requested by the
lookup service, was also started.

3. The Jini Spaces browser or just the basic
Jini browser which enabled one to detect
what services had been registered with
reggie, the lookup service, was also
started.

4. The Sun Microsystem’s implementation
of the Jini Lookup Service called reggie
was then started. Reggie was needed to
enable other services to do a discovery,
join and lookup.

When reggie, the lookup service was
running, it was detected by the Jini Spaces
browser. Because of the way Jini does its
multicast discovery, it sometimes took a few
minutes before the reggie lookup service was
detected by the browser.

After reggie was running on one’s local host
and perhaps other hosts on the network, the
Printer Service was then started. After
compiling the java source code for the Printer
Service, the code for the Printer Service and
the Printer client was kept in two different
directories. This was necessary to avoid

problems with dynamic code downloading of
the printer proxy, at runtime. The command to
run a Jini service can be quite long and
difficult to remember. Therefore, all the
commands were put in a batch files. Below is
an example of how to run the Printer Service.

C:\APACHE\HTDOCS\packages\service-dl>
java -classpath c:\jini1_0_1\lib\jini-core.jar;
c:\jini1_0_1\lib\jini-ext.jar;
c:\jini1_0_1\lib\sun-util.jar;.;
c:\apache\htdocs\packages\service
-Djava.rmi.server.codebase
=http://kings.ima.bt.co.uk:8090/
 -Djava.security.policy=c:\java.policy
uk.co.bt.ima.jiniPrinterService.PrinterService

When the Printer Service was started, it went
off and did discovery to locate the lookup
services on the network and registered its
printing service. Below is an example of the
Printer Service running.

Discovered Lookup Service: jini://kings:4160,
Service ID = bb69a534-c187-41a3-bb6e-
9d4c98b2c624
PrinterService:
got 1 LookupLocator(s)
Registered the Printer Service with the reggie
lookup service.
Printer Service ServiceID: f25d0293-3be3-
46c0-999e-dc4bf12c66cf

The Printer Service is now running.

When the Printer Service was running, it was
detected by the Jini Spaces browser. Fig. 2
shows a snap shot of a Jini Spaces browser,
which has detected 2 services running i.e. the
lookup service called Reggie and the Printer
Service.

By clicking on the PrinterService line in the
browser, more information i.e. the printer

Fig. 2. Jini Spaces browser showing registered services

Fig. 3. A snap shot of the Printer Service Attributes

service attributes can be seen as shown in the
Fig. 3.

Fig. 3 shows some of the printer service
attributes. Some of the attributes are the
service name, manufacturer, model, serial
number, location, etc. If there is more than one
printer service registered with a lookup server,
then by browsing the attributes, a client like a
PID can make an informed choice as to which
service to use. For example, the location of the
printer might be quite important as to which
service is chosen.

Fig. 4 shows the interface on the Palm V PID
that the user saw. A connection had to be
established first, by clicking on the “Connect
to Proxy” button. The data was loaded using
the load button and sent to the Proxy for
printing by clicking on the print button.

Fig. 4. A snap shot of the Palm V with its GUI for talking to the Printer
Service

Fig. 5. A snap shot of the Printer Proxy as it interacts with the Palm V

Fig. 5 shows some of the interaction between
the Palm V PID and the Proxy, and between
the Proxy and the lookup service. When the
Proxy received a print request from the Palm V
PID, it initiated the discovery process to find
the required service and printed out in the text
area, the services found.

Fig. 6 shows the status of the Palm V PID
GUI after the job was printed successfully. A
message was sent back from the proxy to
signal successful or otherwise, printing of the
submitted job. At this point, the user can walk
to the printer and collect his/her printout and
pay for whatever charges are levied by the
service provider. That’s assuming one’s
perhaps at an airport or in a shopping mall that
has internet access.

IV. DISCUSSION

Portable information devices are
revolutionising our lives from making phone
calls, to playing music on them, to using
them as cameras, remote control devices in
the home as well as for internet access. The

Fig. 6 Palm V PID GUI showing status of the print job

results in this research have shown that they
are not only being used to access and
download information online, but they can also
be used to discover federated services
wherever they may be defined and registered
on the network, without prior knowledge of
their existence. A service can be anything that
sits on the network and is ready to perform a
useful function. Hardware devices, software,
communications channels, etc, can be services.

A basic PID can now be used to discover a
whole range of location based services like
downloading a menu in a restaurant,
downloading a train/air line timetables, bank
account details like a bank statement, etc, etc.
In the case of the printer service discovery in
this research, there is no need to install printer
device drivers on the PID, and in any case that
would not be possible because of the PID’s
limited capabilities and resources like memory,
screen resolution, etc. The underlying Jini
technology ensures that the network resources
are only used when needed by using the idea
of leasing, after which time, the resources are
freed and made available for other users.

V. CONCLUSION

This research has demonstrated how online
services like the printing service can be
discovered and used by a Palm V PID using
the Jini technology, to add to the increasing
wealth of applications that can be used on
PIDs. This is achieved via the use of the Jini
technology on a PID which has very limited
Java capabilities, memory, screen resolution,
etc, by utilising the idea of a proxy.
Documents like emails, faxes, web pages, etc,
can be downloaded on the move and printed to
a local printer without having to do any printer
configuration.

REFERENCES

[1] “Latest Mobile, GSM, Global,
Handset, Base Station, & Regional
Cellular Statistics”
http://www.cellular.co.za/stats/stats-
main.htm

[2] Kadirire, J. The Short Message
Service(SMS) for Schools/Conferences,
Recent Research Developments in
Learning Technologies (2005), (Vol. 2,
pp. 856-859). Retrieved June 27, 2006,
from
http://www.formatex.org/micte2005/4.p
df

[3] Kadirire, J. Learning with Mobile
Devices - A Microportal Design
Experience, Recent Research

Developments in Learning
Technologies (2005), (Vol. 2, pp. 792-
797). Retrieved June 27, 2006, from
http://www.formatex.org/micte2005/7.p
df

[4] Venners B., Objects and Java Seminar
– Objects and Java Spaces. Retrieved
September 15, 2006, from
http://www.artima.com/javaseminars/m
odules/Jini/index.html

[5] K Virtual machine. Retrieved
September 15, 2006, from
http://java.sun.com/products/kvm/

[6] The Jini Technology Glossary,
Retrieved September 15, 2006, from
http://www.sun.com/jini/specs/

[7] Edwards W. K., Core JINI ISBN 0-13-
014469-X, published by Prentice Hall

[8] Horstmann C. S. and Cornell G., Core
JAVA Volume II – Advanced Features.
ISBN 0-13-081934-4, Chapter 5,
Remote Objects pages 255-317,
published by Prentice Hall.

[9] The Jini Discovery and Join
Specification, which can be obtained
online from
http://www.sun.com/jini/specs/

[10] The Java Remote Method Specification
which can be obtained online from
http://java.sun.com/products/jdk/1.2/do
cs/guide/rmi/spec/rmiTOC.doc.html

[11] The Jini Architecture Specification,
which can be obtained online from
http://www.sun.com/jini/specs/

