Shell/ITMA

Micros
in the

Mathematics

Classroom

14 teaching units

SR
-y 1
| e i
T i
TN 3
e h
1
- N 5
. !
., -
e
A e
r] £ 3
“ g &
L . LB

University of London
Institute of Education
SOFTWARE LIBRARY
Part of SLIN: Prés/,

15
vl
v
29
33
39
43
49
oy
59
65
71
75

Micros
in the

Mathematics

Classroom

Contents

[ntroduction
ASPIR
AUTOFRAC
BARSET
COUNTERS
CWORDS
DICECOIN
DIRECTED
FREO
EUREKA
FGP
PIRATES
SNOOK
SUBGAME
TABCAR

The computer for the individual:

SCATTER
SIMPSON
HALVINT
COINA
COINB

DISTRB
SLOPE
FACTORS
DIVALG
NUBASE

LONGMAN GROUP LIMITED

Longman House,
Burnt Mill, Harlow, Essex, UK,

@ Shell Centre for Mathematical Education, Nottingham University, 1982.

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted in any form or by any means, electronic,
mechanical, photocopying, recording or otherwise, without the prior permission

of the copyright owner.

The contents of the cassette and disc are copyright, but one back-up copy of
each program on the cassette or disc may be made as a precaution against
accidental damage to the original.

First published 1982.

Printed in Great Britain by Longman Group Resources Unit, York.

Learning through programming 83

10 REM #*#¥VERSION MMC 1., 1%%#

200 FE M 5 350 A 63T A IR I
30 RKEM NUBASE

O FE MR 3355 0 e B3 I I e N
50 INFUT A, By, C, B, E, X, ¥

60 LET T=A%¥X*d4BXA3+0xX 240X A1 4FE%X 0
70 T=INT(T+0,.1)

80 PRINT T - Y®INT(T/Y)

Q0 IF T = 0 THEN 120
100 LET T = INT(T/Y)
110 GOTO 80

120 FRINT “"BASE 3a:"TO BASE ;Y3 "WITH DIGITS REVERSED"
130 END
LAl REIVI 30306 0 5660663 o

Figure 12: Program NUBASE

iiial
£ fIJ,C!',H,'jf,C), <y <)

!

B = =

EASE < TU BASE % WITH DIGITS REVERSELD
Fezacy

Figure 13: Output from NUBASE (for T = 320, to base 5)

4

82

The computer for the individual

U
CRRE {4

on o R

Figure 10: Output from FACTORS (for M=90)

l_ong division

Problem: divide one number by another, and express the answer to as many
decimal places as required.
Purpose: To overcome the computer's limitation of seven significant figures,

and to encourage careful thinking about the long-division algorithm.

5 REM #**VERSION MMC 1. 1%%%

10 FE M % % e 5 2 564 5365646 9 3 3 0 R
20 REM LDIVALG

FOY FE M3 e B 9 I N K
40 INFUT N,I

50 LET @=INT(N/LD

650 FRINT @57 "3

70 LET N=(N-[*E)*10

a0 LET @=INT(NALN

90 PRINT @3

100 GOTO 70

110 ENID

170 FE M 3 53 B 24 33533 O KR KR

Figure 11: Program DIVALG

Base conversion

Problem: write a program to convert a numeral in base X, to its equivalent in
base Y, as a general conversion,

Purpose: to practise the design of algorithms and to reinforce the properties
of a numeration system. (This generally follows work on converting from
s;Jme base X to base 10, and vice versa.)

Program: two possible approaches to this problem are as follows:

We can convert from base X to base 10 and then from 10 to X.

We can utilize the algorithm which enables one to divide the number in base
X by the base X equivalent of Y and consider the successive remainders in
the reverse order (this is the common means of converting from base 10 to
some other base). The program given below utilizes the first approach to the
problem. (NOTE: this program considers a base X numeral of up to five
places, that is, ABCDE : this is arbitrary.)

Introductioh

This collection of programs provides interested mathematics teachers with
material that will enable them to explore the range of possibilities and
potential roles of the microcomputer as an aid in the teaching and learning of
mathematics. The programs, which originate from & variety of sources,
designers and programmers, are deliberately varied in their approach. In some
cases there are detailed teaching notes to suggest ways in which the programs
may be used; you will undoubtedly find further possibilities yourself. In others
there is no such information; you may explore a new and undocumented
program (and there are only too many of these about) to discover for yourself
something of its potential. Teachers have found each of the units included in
this pack useful as an aid to their teaching.

These versions of the programs (Version MMC 1,0 in each case) have been
specially prepared for this publication. In some cases the program is a
reduced version of a larger teaching unit published elsewhere, which aims to
show something of its potential; other smaller units are complete. The
documentation given is also abbreviated in some cases. A few of the
programs are still in the course of development and so may not protect the
user from his mistakes as fully as we normally expect.

The in-service course pack which was designed around this teaching material
is published under the same title by the Microelectronics Education Programme
and is available through its Regional Information Centres; your local advisers
in mathematics or computing will also know how to obtain a copy for you,
should you wish to see one. The material is designed for use on courses but
may also be of interest to the mathematics teachers of individual schools. It
aims to quide the exploration of the mathematics curriculum in the light of
the micro. The number of topics in the curriculum and the number of hours
of ‘different' teaching are both large; there is no immediate prospect of
providing material to cover much of either. In contrast, the number of
classroom activities known to be important to the effective learning of
mathematics is relatively small, yet few of them occur in many classrooms.
The microcomputer has considerable potential in giving help and support to
teachers as they explore new kinds of classroom activity and teaching style.
It is this range of possibilities that these programs have been chosen Lo
illustrate.

This work has received support from the Microelectronics Education
Programme. We are grateful to them, to the Council for Educational
Technology, to the authors and other copyright holders (named with each unit)
for permission to use their work. Many people have contributed to the study
of the mathematics curriculum that guided our selections; in particular we
thank Mike Aston, Peter Holmes, David Johnson, David Sturgess, Donovan Tagg
and the members, in Nottingham and in Plymouth, of the ITMA Collaboration.
Andrew Nash and Doreen Johns with the assistance of Susan Botterill prepared

the manuscript for publication.

Hugh Burkhardt and Rosemary Fraser May 1982

Drivechart for ASPIR

()

enter number of lie Sgment:s (-9
enter angles (in degrees)

enter line fengths
L h
does N
caleulated [RET] enfeulate furfﬁer]___)_#
pelygon.foin [P] Plot what you Iiave]_\
up?
v
< J
\
press [RET] fo go
M A
5> _
p
alter Angles
atter Lines
> 00} > =
res{'arf} s _
|[E] &nd

Note that when entering on angle, you may press wethout having typed a number: the
program will then use the value of the previous angle; in the case of the first angle, i€

wifl use 90. Line fengths work similarly, except that if no value is givea, the first fine
length is set 4o 1. The program automatically Scales polygons fo use ¢he full area of

the screen, so the scale used is not constant.

Learning through programming

81

the points are distinct and whether the slope is 0 (horizontal) or infinite

(vertical).

Lip REM ®x#VERSION MMC 1, 1%+®:

DY TR A R 9 e O K e e e
mEM SLOFE

FUE M5 3 4 46 06 K3 e o e e e e e e e e
- Kl ¥Yhy X&, Y&

(¥R =LY f (XE - Xl

il v S0 b Ly B TpdiZ b o7

S END
LOHC R I 2 220 3 e e o e e W

Figure 7: Program SLOPE

-
ik

Out of data ar ips 50
Faady

Figure 8: Output from SLOPE

Prime factors

Problem: find the prime factors of a positive integer.

easily be extended to prime factorisation.)

(The program can

Purpose: this algorithm involves the application of two number theory concepts

- finding divisors of a number, and testing to see if a number (an exact

divisor, in this situation) is prime.

10 REM ###+VERESION MMI L, LEx=
D0 T R e g e R R
30 REM FaTI
GO RE TP e 2 4 o e e R BN R B R e R
500 INFUT M

&O IF M 2 2 THEN %0

70 FPRINT "M="3M

a0 GATO 0

Q0 FOR N = 2 TO M

100 IF (M/N) - INT(M/AN) = © THEN 130
L1 NEXT N

120 GOTO 50

130 IF M = 2 THEN 170

140 FOR T = 2 TO (N = 1}

150 IF (N/T) - INT (NsT) # @ THEM 110
160 NEXT 7T

170 FRINT N

180 GOTO 110

190 END

200 FUE 46 4 6 6 26 36 06 06 36 0696 36 9646 96 36 463630 4 0 36 30 0 0 e

E R S o el e e L e

Figure 9: Program FACTORS

80

The computer for the individual

10 REM #*#*¥VERSION MMC 1., 1%%%

20 REMS S99 433 43659836 90563006996 1606 96 3696 33696 96 36 96 9696

30 REM sSuMnDIsS

O RE MM 596559696 9 9 3 3635363639696 36 9696 2 366 %6 56 996
50 DIM QQLO0) ,F(100) ,R(100)
60 READ Fe,N

70 FOR I=0 TO R

80 READ F(I)

20 LET Q(I)=F(1)

100 NEXTI

110 FOR K=2 TD N

120 FOR J=0 TO R*K

130 LET X=0

140 FOR I=0 TO J

150 IF I>R THEN 170

160 LET X=X4F(I)*Q(J-1)

170 NEXT 1

180 LET R(J)=X

190 NEXT J

200 FOR I=0 TO R*K

210 LET Q(I)=R(1}

220 NEXT I

230 NEXT K

240 FOR I=0 TD N*R

250 IF Q(I)=0 THEN Z80

260 PRINT 1

270 PRINT TAR(1SO#Q(I))3"*"

NEXT I
DATA &
DATA 2
DATA Q4. 16667 4., 16667 ;. 16667

320 DATA + LOE687 o 1b6ET 4 16667
330 END
TAQ RE MM I 4346 3363 9696 969 3646 6 39
run

2 *

3 *

4 *

5 *

& *

7 *

8 *

b *

10 *

11 *

12 *

Learning through programming

Figure 6: Program DISTRB

The four problems posed here challenge the pupil to write algorithms for

common mathematical processes.

Gradient of a straight line

Problem: Write an algorithm to give the slope of a line through any two given

points.
Purpose: To use an easy programming setting to emphasize the importance of

the general representation of two points in a coordinate system. The program

SLOPE also forces the student to use the definition of slope. Note that a

more complete algorithm would also test the X and Y values to make sure

ASPIR ’

Design: Gordon Haigh, Sheldon Heath School, Birmingham -
Program: Gordon Haigh and Richard Phillips
Source: Gordon Haigh

Program copyright © Gordon Haigh, 1982

ASPIR runs on a Research Machines 380Z in 32K RAM with high-resolution
graphics and BASIC Version 5. It may be used with disc- or cassette-based

systems.

Summary of ASPIR

ASPIR is an investigative program about polygons. Although it is useful in
teaching the geometry of regular polygons, its real value becomes apparent
when investigating the whole range: concave polygons, irregular polygons,
polygons with crossing lines, and combinations of these, The user draws an
image on the screen by means of a sequence of instructions given in terms of
angles and lines. This sequence may be repeated by the program until the
pattern joins up. Pupils may be encouraged to see the relationship between

such instructions and the polygon which results, and so learn to predict the

one from the other,

Figure 1

ASPIR

Running ASPIR

Imagine that you are a fly standing on the bottom of the screen facing
towards its right-hand edge.

You have been given some instructions which tell you how to move across
the screen. These tell you the angles through which you should turn and the
number of paces you should walk. Once you have executed these instructions,
you repeat them again and again until you get back to your starting point.

Suppose that your instructions are 'Turn anticlockwise through 45 degrees,
go forward 5 paces.' If you repeated this eight times, you would return to
your original point having traced out a regular octagon.

Now do the same with the program.

Computer: Number of line segments (1-9)?

You:

Computer: Enter angle 1

You: (Angles are always in degrees and anticlockwise.)

Computer: Enter line length 1

Yous

After a few moments, the computer will show your first move on the screen
and will pause. Press to display the nmext move, and go on pressing it
until your pattern joins up.

Now press , to alter the angle, and type E] . Then press
, to go; again press repeatedly until the pattern joins up. Choose
a different angle and repeat this procedure.

ASPIR in the classroom

You could use this demonstration in a lesson on regular polygons. Try a few

examples and build up a table on the blackboard.

Angle Number of sides
90 4
45 8

120

Ask the class to spot the relationship between the angle and the number of
sides, then get them to test their rule with other angles. Explain that the
angle is the 'external angle' of the polygon.

'The program is not limited to drawing regular polygons. Press to

restart the program and try this example.

Statistics i

10 ALp #*#VERSION MMC 1. 1%*®

O FCE M 5 3 A e T e S 3 R
30 REM COINL

GO RV 96 35 0 K 26K I 2 I N
50 RANDOMIZE

6O FOR I=1 TO 20O

70 IF RND(L) ¢ ©.5 THEN 100

80 FRINT"T";

S0 GOTO110

100 FRIMNT"H";

110 NEXT I

120 END

L300 RIS 550656 5 036 e 26 263636 91 36 3 960 3 960 K

TN
THTTTHRHHTTTTHTHHTHTT

Feadyt
Figure 4z COINA

10 REM #*¥VERSION MMC 1, 1#xx

20 O IV 6 6 06 45 56 06 06 96 B 0 30 30
30 REM COIN:

GO R MK 4365 44 2 3 60 R A R R R R AR
50 RANDOMIZE

&0 LET S5=0

70 FOR I=1 T 1000

B0 IF RNLDICL) 5 THEN 100

0 LET §=85+1

100 NEXT 1

110 PRINT Froportion of heads was'§8/L000
120 END

L0 555 52 K R e

L
Froportion of heads was o B

Feady:

Figure 5: Program COINB

Probability

Probability theory facilitates the calculation of the probabilities of complex
events in terms of their elementary constituents. The computer can handle
and display the often messy algebra involved, and can compare the results
with data from stochastic simulations based on the same underlying
probabilities.

The program DISTRB is a probability calculation for the expected
distribution of the sum of the results of n experiments, each of whose
outcomes is one of a finite set of events whose members have known
probabilities - for example, the sum of the results of rolling n dice. It
provides a nice algorithmic illustration, though the structure would be more
clearly visible with a computer that allowed indention in the BASIC code. It

could well be compared with a simulation of the same exercise.

78

The computer for the individual

Solution of equations by iteration

The program HALVINT finds an approximation to a solution of f(x) = 0
between a and b, where f(a) and f(b) have opposite signs., You might like to
try the program for speed and accuracy using a simple linear equation, a

quadratic, an equation of order 5 which could not be done algebraically, and

finally perhaps a transcendental one like eX = 3x.

00 REM *xxNVERSTOM MMO 1, 1xxx

TV 0 e B e 6 e O e R
30 REM HALW T MT

ST FUETTE E 3 R E

O PRINT CHR%(12)3"Thas program finds a roor of FiX:=Q"
NT"betwswen A and B 2T FiAa) and FoB) N
NT"oppa=1te sigre ano FLX) 1s conti
BO FRINT"1n (aiB).

20 FRENTPRINTFRENT YERTMT

DOPRINT"The ervor 1s to bz less than o
FRINT"Input youws function at line 170,
MT" Tresn 1ypes - Rupd L
INT s FRINT S PRINTYRRINT

Ern

LSO PRINT: FRINT Inpur &, B e,

Lot INFUT AR H

170 DEF FNCOXo=EXE X) -G

LY IF FNGOAI®FNCOEY X0 THENM PRINT MUl rabpie p,E, "vLOTO 154
190 C=laspdrd

O IF FNCAC) =0 THEM 240

IF FNOCCY#FNCIa 30 THEN A=C

IF FNCCCH*FNCOM (D THEN B=C

IF ABS(E-A) I THEN 180

T he rogt 1w T30

S0 END

SO0 ULV K R e e e e R e e

Figure 3: Program HALVINT

Statistics

Simulations

These delightfully simple programs COINA and COINB can be used to
stimulate discussion of a range of obvious statistical points; they are obviously
at a level which could be managed by the student - or even a brave teacher

in front of his class.

Ideas and questions about ASPIR 7

RET
E
RET
EX
E
=
E
ET
ET
E
RET

Number of line segments?

X

e EEEEES
B EEEEE

—

Enter angle 17
Enter angle 27

s)

Enter angle 37

Enter angle 47

—4

Enter angle 57

A
sl

Enter line length 17

A

Enter line length 27

Y]

Enter line length 37
Enter line length 47
Enter line length 57

oy
-

You have defined the five-line pattern shown in Figure 1. Press , and
continue to press until the pattern joins up to make a polygon.

‘There are many ways this program could be used in a lesson. For example,
it could be used to teach pupils to visualize geometric patterns. Ask the
class to work out in their heads rules for drawing a rectangle, a cross or a
star shape. Then use the program to test the rules they have produced.

It is also useful to try this exercise in reverse. Give them a rule such as:

2 line segments
Angles -60, 120
Lines 1, 1

and ask them to visualize the shape.

Tdeas and questions about ASPIR

i

3.

When a shape joins up, what can you say about the total degrees turned
through? Can you make a shape that will travel across the screen and never
join up?

If you want the class to visualize geometric shapes, it is a good idea to ask
them to close their eyes; give them plenty of time to build up a visual image.
Compare the approach in this program with the LOGO turtle geometry
described in Seymour Papert's book, Mindstorms (Harveston Press, Brighton,
1980).

AN4O

Using programs

Integration

77

Numerical integration provides one of the few numerical topics in traditional

syllabuses.

The program SIMPSON should help the development of intuition

about Simpson's rule, and about the underpinnings of its accuracy and stability.

It may be best to start with an integral which can be checked, e.q.

|
[dex ; with N equal to 1, 5, 10 and 50. This can be repeated with an
]

example like J.

0

method to an integral which can only be done numerically, e.q.

Lu

% e [

Pupils can suggest the number of steps to be tried on each occasion.

10
20
30
40
S50
50
70
aa
20

REM %%%VERSION MMC 1., 1%%%*

FUE M35 39 36 96 9696 369696 36 396 9 36 36 9 96 96 3 36 3 96 36 36 36 9 36 36 4 4

REM SIMFSON

LM 3 36 396 36 36 46 3 3696 96 3036 3 3 36 3 3 36 9 36 3 36 3 9 9 3 9 5 369 H K

REM N.B. The FNC(X) given needs to

REM be handled witkh care!

FUE M A6 36 3 36 9 96 96 36 3636 36 369646 36 36 396 46 96 3 36 36 3 966 9 %

FRINT CHR$(12)3"This program calculates the integral"
FRINT"of FNC(X) from A to B using N steps"

100 FRINT" (ZN+1 ordinates).”
110 PRINT:FPRINT:FRINT"Input your chosen function at"
120 PRINT"l1ine 160 and then type ‘RUN 1507 ,"

130
140
150
160
170
180
190
200
210
220
230

FRINT: FRINT: PRINT: PRINT

END

FRINT"Input A,E;N":INFUT A,E,N
OEF FNC(X)=6/(SAQR(1-X#%X))

S=0

H=(B-A) /N

FOR J=0 TO N-1
S=E+FNC(A+J#H) +2¥FNC (A+ (J+0. 5) #H)
NEXT J

S=2%5-FNC(A)+FNC(E)

S5=H#5/6

240 PRINT:FRINT:FRINT"The value of the integral is "38
250 REMIEIEAE I I 3696 5 3 39696 9 336 6 3 39696 9 96 46 96 % % %

Figure 2:

Program SIMPSON

1
2
6dx/~/(1-x2) which gives T . One can then apply the

The computer for the individual

help the development of strategic skills via the use of educational games.

Programming by pupils

Writing simple programs is accessible to pupils of a wide range of ability and

a number of benefits can accrue:

Programming is one of the few areas in the school curriculum where pupils
are required to master a task completely.

Programming can provide a semi-abstract bridge to formal reasoning.
Constructing algorithms and making them work is an important mathematical

activity which can provide pupils with valuable insights.

Using programs

Graph plotting

The computer is well suited to the display of graphical material.
Sophisticated graph-plotting programs such as FGP offer a wide range of
facilities and provide a good deal of help to the user in terms of an
appropriate choice of scales etc. The code, however, is likely to be opaque
to the inexperienced programmer.

SCATTER is a very simple point-plotting program which pupils should be
able to understand and to extend.

10 REM #*##*VERSION MMC 1. 1%%%
S0 REMS6 33 3 3 H 4 He 06 36 3 23 0 W 3 IR K

30 REM SCATTER
GO RE M3 394 3 3965 34 5 3 0 3 36 N 36 R0k 33 KR
S0 FUTLZ

50 FRINT"Press RETURN to start. ":FRINT:FRINT
70 PRINT"To finish input x=9%, y=9%."
80 FPRINT:FRINT:FRINT:FRINT

g0 A=GET()
100 PUTL2
110 GRAFH

120 FLOT 79,8,1:LINE 12,8:LINE 12,358
130 ¥$="y values"”

140 FOR I=1 TO &

150 FPLOT 0,48-3%I1,MI0&(Y$,I,1):NEXT I
160 FLOT 40,0,"x valuss”

170 PRINT"Input co-ordinates X,y."
180 INFUT X,Y

190 IF (X{(1 OR X»1%) THEN GOTO ZZ0
200 IF (Y¢1 OR Y»15) THEN GOTO 22¢
210 GOTO Z50

220 IF X¥=99 THEN GOTO 270

230 PRINT"Co-ordinate out of rangs.”
240 GOTO 170

250 FLOT X*3+12,Y%3+8,2

260 GOTO 170

270 TEXT

280 END

DY FE MACHE 3 32696 3 36 5 31 39 A H I 96 3396 I 96

Figure 1: Program SCATTER

AUTOFRAC 2

Design: Jon Coupland
Program: Jon Coupland
Source: ITMA, Plymouth

Program copyright @ Jon Coupland, 1982

AUTOFRAC runs on a Research Machines 3B0Z in 32K RAM with BASIC
Version 5. It may be used with a disc- or cassette-based system. [t does not

require high-resolution graphics.

Summary of AUTOFRAC

AUTOFRAC provides a continuous film-like display of equivalent fractions, in
the form

8=4

B =i

Having been initiated, the program runs indefinitely without intervention
from the user. FEach new pair of equivalent fractions, chosen at random, is
displayed in its incomplete form for a specified time, after which the missing
number is shown. The program then moves on to the next pair.

The user may specify the level of difficulty required, and the delay time

(in seconds) for which the unsolved problem is displayed.

Running AUTOFRAC

AUTOFRAC is very simple to set up. The program is loaded from the disc or
cassette and then run.

At the outset, you must choose the level of difficulty, in the range 1-10:
this number defines the maximum number that can occur in the fractions.
Secondly, you must choose the length (in seconds) of the delay before the
answer appears; this may be from 0 to 20 seconds.

Typical screen displays are shown below. Each item of input must be
completed by pressing the key.

10 AUTOFRAC The computer for the individual i

i S R g T v v v v oS In this section, we give a few simple programs. You will undoubtedly want to

CONTINUOUS DISELAY OF FRACTIONS amend them before use. A copy of each program listed here exists on disc,

by . COURLAND so there is no need for you to key the programs into the computer.
LEVEL OF DIFFICULTY (i-10)7 & ' The main purpose of this section is to illustrate the role of the computer
A S v o e as a teaching aid for the individual. The user can benefit both from using
DELAY BETWEEN ANSWER +3EDHT 4
programs and from the process of programming itself.

Figure 1

General warning

Most of the programs earlier in this handbook have been carefully developed.
They protect novices against a number of errors which they might make. This
is not the case here.

The programs here offer no protection against user error. The nature of
the error must be deduced from the computer's somewhat cryptic run-time
comments (such as 'Undefined statement at line X' or 'Can't divide by zero at
line Y").

This lack of protection can, in itself, be instructive: it may demonstrate
the need to safeguard naive users, and may cast light upon the underlying
mathematics. 1n‘any case, these simple programs are typical of many
programs written for specific use by individual users.

We are grateful for contributions from David Johnson and Donovan Tagg,

and to Jim Ridgway for help in compiling this section.

Using programs

A large number of mathematical topics are appropriate to the development of
programs by and for individual users. These topics include:

graph plotting;

numerical integration;

solving simultaneous equations;
Figure 3 matrix manipulation;

AUTOFRAC runs continuously until you 'break in' to the program. To do this, solving equations via iteration;

hold down the |CTRL| key and press . This stops the program and differential equations;

returns to the 'Ready' state, when the program can be run again. displaying data;

simulations and games.

Notes on AUTOFRAC Thus a range of mathematical and statistical topics can be illustrated via

programs; and many of these can easily be written by pupils.
The levels of difficulty are inclusive, and are dictated simply by the range of

numbers which can appear in the fractions. Given a level of difficulty 'D', Individual learning
numbers used are in the range of 1 to 9.9 x D. This means that even if a e g
Computers used by individual pupils serve to:
level of difficulty of 10 is chosen, problems of difficulty 1 will be
motivate drill and practice;

encourage problem solving activities;

74

TABCAR

This progr.am was written for primary schools, but could easily be used in

secondary schools in remedial work. Its operation is self-explanatory.

Ideas and questions about TABCAR

1.

3.

5.

The problems are generated using a random number generator; all integers
between zero and twelve occur equally often. Watch the program working for
several minutes, then compare the advantages and disadvantages of using a
random number generator in a program with those of a fixed set of arithmetic
problems stored in the program.

It is usually true that flexible programs are difficult to use, whereas inflexible
programs are easy to use. TABCAR is easy to use and relatively inflexible -
for example, you have no choice about which multiplication tables are
practised. Consider what features you would want in a more flexible
multiplication practice program, and how this would affect the ease in using it
How motivating is a program of this sort?

Compare it to the CWORDS program.

Would you use the 'racing cars' to motivate other drill and practice
exercises?

How would you organize the classroom use of these programs?

AUTOFRAC in the classroom 11

encountered. This is a very crude method of deciding how difficult problems
will be to solve. For example, 25/50 = 1/? should prove straightforward,
though the size of numbers here means this problem is possibly of difficulty
level 6.

The delay before the answer is given can in practice be chosen only in the
range 0 to 20 seconds. A delay of 20 seconds will probably result in total
boredom; a delay of 0 seconds is probably best used only when it is the
working of the computer, and not the nature of fractions, which is being
demonstrated to pupils: they can then see that the computer is not really as
slow as otherwise appears.

In considering the working of the program itself, it will be found that (not
surprisingly) AUTOFRAC cheats in working out its equivaient fractions: it
knows the missing number from the beginning each time.

The program code appears long and tricky, but the majority of it is
involved in producing the laroe digits on the screen. The generation, at

random, of the actual problems will be found to be quite short.

Possible changes to AUTOFRAC

L.

2

There are two main areas in which changes should be considered.

The user might be allowed to stop the program at any stage to permit
discussion of a particular problem. Such a change can be implemented easily

as follows: add these two lines to the program and save the new version.

3295 L=GET(D) : IF =0 THEN 3300
3297 PRINT "WAITING - Press any key to continue': L=GET()

This addition will cause the program to wait after a problem has been set
if any key has been pressed, and to continue only when any key is pressed.
The author considers such a change undesirable. Its effects are discussed

below.

The coding which decides the level of difficulty could be improved so that the
number chosen does actually determine the level of difficulty encountered in
solving the fractions (rather than merely the range of numbers that can
appear). Technically this poses some problems as there is little general
agreement about which aspects of the solution of equivalent fractions are

found to be maost difficult.

AUTOFRAC in the classroom

In its original form, AUTOFRAC waited after setting each problem and
displayed the answer only when a key had been pressed. This meant that the

12

AUTOFRAC

user (teacher or pupil) was in control of the program: the user decided on a
suitable time to move to the next problem. This detracted from one aspect
of the computer's potential - its role as an additional member of the group,
seemingly independent and actually in control of the pace of the activity. It
was found that the pupills (and teacher) much preferred the computer to be in
charge so that the teacher was in the same position as the pupils, struggling
to solve a problem before the computer relentlessly presented the solution and
moved on to the next.

A constraint on the operation of AUTOFRAC during its development was
having only one computer in a suite of mathematics classrooms. The
computer itself was difficult to move, and sometimes more than one group
wished to use it at the same time. The solution was to wire up rooms with
television screens which could all be driven simultaneously from the same
computer. Naturally, programs broadcast on this network could not allow
interaction. This constraint on software is highly significant; parameters for
the program must all be set at the beginning.

AUTOFRAC has been used in formal lessor time and left running during
breaks, lunchtimes and registration in a somewhat subliminal mode. In lessons
it provides a rare opportunity for children to display their prowess at mental
arithmetic. It also demonstrates dramatically the surprising range of
techniques required in solving equivalent fractions efficiently. It has been
used with a purely verbal response, with children competing to volunteer the
correct answer. If a suitably long delay is set, the children can write down
their answers for consideration later. In this case the teacher must do
likewise: the program has no facility to play back a set of problems.

The program may appear repetitive and boring, but children seem very
attracted to the novelty of the task. Perhaps this is a tribute to how
interesting and stimulating mathematics has become.

AUTOFRAC is not intended to support a full lesson's activity, but a few
ten-minute bursts through the school year may prove useful. Certainly, it has
been amazing to leave the program running in the lunch-hour and to watch
children glued to the windows of the classroom, desperately trying to find the

correct solutions!

Ideas and questions about AUTOFRAC

1.

Does the program promote some useful mathematical activity?

. The program relies on mental arithmetic. Is it therefore a help in identifying

pupils with particular abilities or problems?
Can the program be used well with any child responding, or are the best

results obtained if the class is split into teams?

TABCAR in the classroom 13

L]
L
r COMPUTER

r}: Itma

RUESTION 2

What is <4 x 4 7

Figure 3

As soon as one car reaches the winning post, the program stops.

s
COMPUTER
L]
[]
r:' Ttma

Figure 4

To interrupt the program, hold down the |CTRL| key and type .

TABCAR in the classroom

This simple multiplication testing program is probably best used with
individuals or small groups, although it has been used successfully with whole
classes.

If the output is sent to a printer also, the cars will not be printed but you
will have a permanent record of the sums set and whether they were right or
wrong. Pupils could be asked to correct wrong answers shown on the print

out.

72

TABCAR

RLIM
Hzllo, What is yvouwrs name? TTMA
Hi ITMA. Thiz is a test of your

tahli@s,

Type your answer to each question

foilowsd by the "RETURM buttom,

Your car will move 1f yvow ast a

gquesstior right and mive will move

it ovou et one wirono.
GOOD LUCK

(AL

N L

What dis 7 x L2 7 24
W TING

GUESTION 2

Winat iz oo 4 i
Fe L kT

CDESTLON &3
Wiat i= 2 % & 7

Figure 2

Now type your answers to the questions posed.

picture of the car race according to the accuracy of your answers.

The screen modifies the

L
6.
7.

Ideas and questions about AUTOFRAC 13

Would you like more control as the program is running, such as the ability to
stop the program at any time or to key in attempts at a correct solution?
Does the ease of running the program outweigh limitations to its flexibility?
Is the lack of control by the teacher undesirable in the classroom?

Do the pupils (and teacher) actually enjoy the activity?

14

Drivechart for BARSET

A

e

17> (R restort D) g
"How do .
end | stop)
You want @
to choose Your cho:‘ce] > Complete table
+he numbers7™ t [R] Random chor'cc} N ™
Y 4
{ ‘ 9
<’=‘> r [a] Gmap.s} > () /mmediate A
s Alphabetic P) Pause
" a;ng’c Columns Numeric @ Quickly
s T [v] Random *39) Slowly
restart af®} > b .
| 8 o }——Ctp

Y

available only when (Scale @/gﬁr)}

—

arranged in columns t Bigios

.

=5

Barchart

[S] scale o) |——> }

restart at @} >

[€] &d |——>——C(stop)

TABCAR i

Design: Tony Haskins
Program: Tony Haskins
Source: Birmingham Educational Computing Centre

Program copyright © Tony Haskins, 1982

TABCAR runs on a Research Machines 380Z in 32K RAM with BASIC Version
5. It may be used on a disc- or cassette-based system. It does not use high-

resolution graphics.

Summary of TABCAR

TABCAR provides practice in multiplication tables in the context of a car
race. A correct answer moves your car forward; a wrong answer advances
the computer's car. Problems are chosen randomly, using integers between
zero and twelve. Note that if you get the answer wrong, you are not told

the correct answer.

1
COMFUTER

¥

Itma

RUESTIDN 7

What is 12 x 10 7

Figure 1

Running TABCAR

Load TABCAR; then type 'RUN'.

BARSET i

Design: Graham Field, Rosemary Fraser, Jane Petty, Jan Stewart,
Laurie Tate
Program: ~ Graham Field

Source: ITMA, Plymouth
Program copyright (C) CET/College of St. Mark & St. John, 1982

BARSET runs on a Research Machines 380Z in 32K RAM with one of the
following versions of BASIC:

BASICS Version 5 (but not 5.0G, which has a fault in the TAB function)
BASICS Version 4 (tested with 4.0D)

DBAS9

BASG

Note: If the program is transferred to BASIC Version 5 using OLDLOAD, you
must ensure that lines 9040 and 10300 are properly translated. Type

BRI [l
EDMN NEE0DY ReT) ReT]

Then save the program.

BARSET may be used with a disc- or cassette-based system. It does not
require high-resolution graphics.
Please note this program is still under development and later published

versions may differ from this one.

Summary of BARSET

The program handles sets of pictograms of five objects prepared in advance
(using BARPIC, a separate program) and of pets. There may be up to 5 of
each object, with an overall maximum of 20 objects. These objects are first

displayed at random and may then be moved into various arrangements.

Running BARSET

The first decision is prompted by:
How do you want to choose the numbers?

Permitted alternatives are |EI (at random), (your own choice) or
(end).

IE] will produce a random number of pictures of the defined set of objects:
this number will be in the range 8 to 20.

16

BARSET

leads to a table which is completed by the user. The machine lists the
names of the five possible objects and the maximum allowed number of each:
this must be less than 5 and give a grand total of 20 or less. When the table
is complete, the chosen pictures .are displayed on the screen in random
positions (Figure 1).

The second decision follows: Arrange how?

The program continues to return to this point from now on, until the question
is answered by pressing the key (when it goes back to the previous
decision point).

The user has initially two choices:

Groups, with one of the five types of object in each of the four corners of

the screen, and the fifth type in the centre; or

Columns, with the five types arranged in columns.

In the latter case, the order of the columns may be indicated by typing
(alphabetic order), (numeric order, decreasing in frequency) or E
(randomly ordered). When arranged in columns, there are two further options:
instructs the computer to draw or remove a scale at the left-hand side;
and converts the diagram into a barchart. Having reached the barchart
stage, you must type to end the program, or to go back to the

previous decision point.

Speed controls in BARSET

©)

At any time during the rearrangement of the pictures, one of four speed

controls may be used:

Slow. This is the default condition. The picture to be moved is enclosed by
a border: the picture flashes, a similar border is drawn at the point where the
picture is to be moved to, the picture is transferred and flashes again, and

the borders are removed.

@ Quick. Transfers occur without bordering and flashing.

®
O

Pause.

Immediate. In this mode, the final position is displayed at once.

BARSET in the classroom

2l

CEE

Here is a typical route through the program.

Random choice of numbers. Count how many there are of each type.
Rearrange into groups, since this makes counting easier. Are the numbers
still the same?

Rearrange into columns...

«.in numeric order.

Pause, with one picture flashing - where do you think it will go?

SUBGAME in the classroom 69

Pupils can be given this strategy and then encouraged to suggest
improvements, and to test their ideas against the computer.

To conclude, SUBGAME can provide a useful and stimulating environment in
the classroom, promoting class discussion, individual pupil work and

development of a simple gaming strategy.

68

SUBGAME

SUBGAME in the classroom

SUBGAME has promoted many interesting lessons in mathematics. On first
acquaintance, SUBGAME appears to be simply a game best suited to a single
user; SUBGAME displays its true potential only when used in the classroom
with a full group participating.

The initial problem can be simply to beat the computer either with the
whole class contributing or (better) with each student working individually and
recording his own attempts. As with many topics, the structure of students'
answers can be improved by providing duplicated sheets with boxes already
drawn for them; they can then enter values and keep the record of their work
neat and accurate.

Once the program has been used solely as a game (perhaps ten times), the
problem can be widened to consider the strategy being used by the computer,
and whether this can be bettered. Pupils may well allege that the computer
cheats; how can we be sure that it is generating random numbers and not
carefully adjusting the values it produces to make sure that it wins. It might
even lose games to encourage the user to try again (the 'one-armed bandit’
syndrome). In one lesson when pupils then accused the computer of cheating,
the teacher assured them that it was only a machine and so did not know how
to cheat. However when they tried to place a digit in a square already
occupied, the computer accused the students of cheating! This multiplicity of
roles played by the program, and the pupils response to it, is an interesting
facet of SUBGAME.

The strategy used by the computer is very simple, merely a hierarchy of

places for each digit depending on its value.

Digit Order of search for an empty place
A
d e c b a
2 4
-_5 hY

4 ’ e d c b a

SJ
6

c b a e d
7
8

a b c e d
9

SPACEBAR

[IE@@@

Ideas and questions about BARSET 17

Continue slowly.

Pause again. Why did that picture move there?

Quickly (if and when sufficient discussion has taken place).

Put boxes around the pictures to complete the conversion to a barchart.

Does the picture still say the same thing? Can we count now? What do we
need to be able to count?

Add a scale. Does this help?

End the program run.

The program provides sufficient variation for a large number of teaching
situations. It can promote counting, discussion and re-ordering of objects, as
well as an introduction to concept of barcharts.

Since there may be no more than five of each type of picture, the use of
true pictograms - in which each picture represents more than one item - may
be explored with the pupils.

Rearrangement of the pictures into columns in one of three possible orders
may raise the question of the 'best' or 'most natural' order for the columns.
Does the order matter?

BARSET has been designed primarily for young children, however the
algorithm that is employed for the sorting and grouping processes will be of

interest to computer studies groups in Secondary Schools.

Ideas and questions about BARSET

2L
2.
3.
4,

5.

Is the driving system satisfactory or too complex?

Are the low-resolution graphics diagrams satisfactory for the purpose?

Does the program cover all the likely teaching requirements in this area?

Do the restrictions on numbers {maximum of 5 of each picture and total less
than 20) limit the program too severely?

To what extent would it be possible for the program to be used by pupils,

individually or in small groups, with minimum intervention from the teacher?

(BARSET as published in this collection of programs restricts the user to
one set of data. A later version of BARSET is to be published with a sister
program BARPIC which aliows you and/or the pupils to create your own sets
of data. This extends the use of BARSET considerably.)

The following figures illustrate the variety of arrangements that are

possible.

18 BARSET

Running SUBGAME 67

SCORES
You Me draws
0 8} 0

Itma’s bhoarc

Figure 3

If you attempt to place a digit in a space already occupied, the computer
will prevent this and accuse you of cheating. When both sums are complete,
the computer will calculate its answer and then prompt you for the units, tens
and hundreds answer for your sum, accepting correct values only. The score

board is updated, and you are invited to have another try.

SCORES
You M diraws Use
Q)) i)

Computer’s board

Itma’s board

R

Figure 4

66

SUBGAME

Running SUBGAME

SUBGAME is relatively easy to run. When the program has been loaded from
disc or cassette, type 'RUN' as usual. The first prompt is for a name: after

typing this, press the key.

SUBTRACTIDN GAME

You will he given five digits to place
in a subtraction sum. The computer will
play against you.

You have to make the answer to your sum
as large as possible!

See if you can beat the computer.

Please type your nams and press RETURN.

Figure 2

The screen displays the two blank subtraction sums (a two-digit number to
be taken from a three-digit number), and the first digit to be placed in your
sum. To place the first digit, press , , p @ or on the
keyboard. The computer then places the same digit in its own sum, and

proceeds to the next digit.

Ideas and questions about BARSET

e W W
v W W
%

#

A IMIALE

AM [MALE

TORT- DOG CAT FIBH BIRD
OISE

Figure 6

19

20

BARSET

L]

2 2Nl

ANIMALS

-~
-

L W=

E 1R

Figure 7

CAT

noe FIsye TORT-

OISE

ANTIMALE

CAT

ooG FISH TORT-
QISE

SUBGAME i

Design: Brian Ives
Program: Brian Ives
Source: Brian Ives, Microcomputer Coordinator for

North Yorkshire County Council
Program copyright © Brian Ives, 1982

SUBGAME runs on a Research Machines 380Z in 32K RAM with BASIC Version
5. It may be used on a disc- or cassette-based system. It does not use high-

resolution graphics.

Summary of SUBGAME

SUBGAME is a useful example of the different roles that a computer can play
in the classroom. The program consists of a competition between the user
and the computer to allocate digits to a subtraction sum so as to give the
largest answer. The digits are generated randomly by the computer; the class
decides where to place each in turn while the computer competes alongside
with its own sum. (Note that the same digit may recur.) Wh=n all digits
have been allocated, the computer calculates its own result, the class types
its result and the winner, is the player with largest answer. The computer
displays a record of won, lost and drawn.

A typical screen display is shown here in Figure i

SCORES
You Me draws Use
0 1 2

Itma‘s board Computer’s board

=3
9 8 7 8 & 7
a h C
E
b &
TEPRRRE 1 b W 1 Q
d 2 3
At 0
RN
9 7 1 8 <4 8

YOU WIN - WELL DONEM

Do you want to try again (Y or N)?7

Figure 1

COUNTERS “

Design: Anita Straker
Program: Anita Straker and Graham Field
Source: Anita Straker, Wiltshire Education Authority

Program copyright © Anita Straker, 1982

COUNTERS runs on a Research Machines 3807 in 32K RAM with BASIC
Version 5. It may be used on a disc- or cassette-based system. It does not

use high-resolution graphics.

Summary of COUNTERS

COUNTERS is a game for two players, intended to strengthen knowledge of
number bonds and to develop strategic thinking.

The program displays a row of squares marked with the numbers 1 to 9.
Players take turns to place their counters on uncovered squares. A player
wins if he or she is the first to have three counters on squares whose
numbers total exactly 15.

The game may be repeated with the same or with new players. If the

same players continue, they take turns to begin.

Running COUNTERS

After an introductory title-sequence, the prompt
Do you want the rules?

appears. The operator(s) must reply by pressing either of the keys (yes)
or (no). If is pressed, a description of the game is displayed.

The players are then invited to type their names. The program
automatically uses a capital letter at the beginning of the name and lower-
case letters thereafter. If the key is not pressed within a given time,
a warning is printed.

The boxes used for the game are displayed with the numbers 1-9 above
them. Players are prompted by name to enter the number of a box that they
wish to occupy. Although this entry is of a single digit, it must be completed
by pressing . A grey or white counter, as appropriate, is displayed in
the required box (Figure 1). Totals are checked automatically and the winner
advised both by flashing the three numbers in their boxes and displaying their
sum below (Figure 2). If all boxes are occupied without either player having
won, a draw is declared.

The game may be played again with the same players or new ones. In
each case the option is selected by typing (yes) or (no) in answer to
a simple question.

22 COUNTERS
Michasl - greay George - white.
1 2 | o4

L T S T Y AN TN Y YA NS AT
1 | [1 1 1
| | 1 1 1 1
] 1 1 1 1 i

fagrge , your tuen

Whick bor fovr wour counter

Figure 1

Watl played, & crawl!

Michas' - % games. Learmge A EEE

dnother game 7 Type ¥ for yes, Motor o
Warning - PRESSE Y 0R N PLEABE,

Figure 2

Ideas and questions about COUNTERS

1. Does the title sequence add to or detract from the program?

2. Are the instructions provided sufficiently clear?

3. What is your strategy for play?

4. What strategies would you expect children to develop?

5. Could the program be used for a whole class, under teacher control?

6. For what age and ability range is the difficulty level appropriate?

5

6.

7

8.

SNOOK in the classroom 63

P
s
2
P
Fa
’
~
s
I Vi
7
’
’
/
’
’
/
P
’
s
P
/
7
’
’
e 5| 2
s
’
/
/
s/
’/
#
I
/
4
’

4
Horizontal and vertical grid lines crossed 3
(Add on for start and finish) +2
Total number of hits recorded 5

From the diagram it is 'clear' that the ball will finish in the bottom right

corner.

How can the various hypotheses be written down? This can lead to a
discussion of mathematical research, and to the need to exchange on paper
details of work done.

Using the (wait) key at some stage, can we tell from the present pattern
what the complete pattern will look like? Must the ball produce a complete
symmetrical pattern before it hits a corner?

What combination of height, width and gradient (or angle) causes the ball to
run across the grid and finally hit the original corner (bottom left)?

The move from gradients to angles will introduce concepts of irrationals.
What effects does an irrational gradient have on the path of the ball?

If drawing has been used, you can investigate other shapes of table. Of
particular interest is a circular table with a hole in the centre and the ball
sent from the edge.

What relationship is there between height, width and the number of regions

into which the ball has split the grid when its path is complete?

62

j

3

SNOOK

Hypotheses may also be formed concerning the relationship between height,
width and the particular corner pocket into which the ball finally falls. This
relationship should not prove too demanding if the earlier one was successfully
discovered.

SNOOK can be used to introduce the concept of generalizing results. By
changing the gradient of the ball's path, setting it to 0.5 or 2 as well as to
the default setting of 1, pupils can quickly appreciate that the problem is
fundamentally the same; they simply need to factor the height or width
accordingly.

Finally, pupils can study the results of changing the angle of the ball's
path. This is set initially to a5°, but in the full version can be set to any
angle. The results may provoke much interesting discussion and thereby reveal
the well-defined mathematical structure of the problem as opposed to that of
the real situation.

The height and width can be keyed at the keyboard, or the program can be
run in film-mode. In this setting the height and width are generated randomly
and the teacher can sit with the children, not typing at the keyboard but busy

recording results and sifting ideas.

Using a program such as SNOOK frequently promotes wide-ranging
discussion with pupils. Here are some points that have emerged in our trials.

These questions either posed directly or subtly encouraged, are of interest:

To what extent is the situation displayed an artificial one? (Bounce is
perfect; the ball never stops; a point ball falls into a point pocket.) Is it a
necessary feature of computer simulations that in order to be implemented,
they must simplify the situation so that it becomes unrepresentative?

How many examples of the application of a rule must be considered before
deciding that the rule is correct? What is the difference between the
mathematical proof for a well-defined problem and the testing of a scientific
hypothesis concerning observed phenomena?

The proof is quite difficult. One interesting approach is to draw a grid of
rectangles of the chosen shape 'allowing' the ball starting in the corner in the
chosen direction to cross each grid line it meets - instead of being reflected
it moves from 'table' to 'table' in a straight line. The ball enters a pocket
when the line meets another corner; the sum of horizontal and vertical 'table’
lines crossed plus two gives the number of hits. You can then work out
which pocket the final corner represents. For example, on a table width 4,

height 6 the diagram would be:

CWORDS 5

Design: Anita Straker
Program: Anita Straker and Graham Field
Source: Anita Straker, Wiltshire Education Authority

Program copyright © Anita Straker, 1982

CWORDS runs on a Research Machines 3B0Z in 32K RAM with BASIC Version
5. It may be used on a disc- or cassete-based system. It does not use high-

resolution graphics.

Summary of CWORDS

CWORDS ('counting words') is a drill-and-practice program intended for use by
individual children or small groups. The program offers a test of verbal
description of numbers within a predetermined range of values. If an
incorrect answer is given, the child is invited to try again. This time, he or
she is prompted with information as to the number of digits required. Should
the second answer be wrong also, a special tuition page is displayed and the
child prompted to complete the number digit by digit (Figure 3). At the end
of the program, the teacher may have a report of the scores of all children
who have used the program, (Answers are taken as right if they were correct

at either the first or the second attempt.)

Running CWORDS

[HIf] =]

After an introductory title sequence, the prompt:
Do you want the teacher's notes?

appears. The operator must type (yes) or (no) as desired. The notes
give a brief explanation of the program.
The operator (who may be presumed at this stage to be the teacher) may

select one of three options:

for numbers up to 999;
for numbers up to 9999;

to end the program.

Selection of or specifies the range of numbers which may be
presented to the child or children for identification. In either case the
teacher will next specify the number of questions which are to be put to each
child. This input must be terminated when complete by pressing .

The program now requests the name of the first child. The name is used

both for an initial greeting and during subsequent prompts.

24

Notes on

CWORDS

Each question is presented to the child on a new 'page' (that is, a fresh
screen). This display consists of the number of the question, the current

score and, below a dividing line, the question itself with this prompt:
What is this number in figures?

(See Figure 1.) An incorrect response is translated into words and the child is
told how many digits are expected. He is then given a second opportunity to
answer (Figure 1). If the answer is again wrong, a different 'tuition' page is
displayed (Figure 2). The child is taken through the various 'place-values' in a
decreasing sequence. In the event of a wrong answer at this stage, the
correct digit is inserted. .

When this has been completed, the pupil is required to type the full number
before moving on to the next question (Figure 3). When all the questions
have been completed, the child is given a page showing his or her score and
is congratulated. The name of the next child is then requested as above.

At this stage the teacher may, by pressing the key, obtain a report on
the scores of the children who have attempted the exercise. This report may
be sent to a printer if hard copy is required.

The questions are generated at random and are different for each child.

the use of printers

To attach a printer, change lines 20100 and 20110 as follows to accommodate

your own printer:

20100 PT = printer type for your printer
20110 BR = baud rate for your printer {(may be zero for some)

These provide the two parameters in the command 'PRINTER PT, BR'. As
provided, all printer output is sent to the screen, so selection of this option

will cause the report to appear twice.

1. SCORE: O

2ight hundred and seventy
What is this number in figures 7807

You hawve typsd in
e=ight hundred and seven

Try again, Youw" answer should have
thres Figures,

Figure 1

SNOOK in the classroom 61

HEIGHT

WIDTH
a

-

HITS
18

Figure 2

Enhanced version of SNOOK

An enhanced version of SNOOK will be published separately. The full version
will allow the graphic display of results for heights and widths up to 999999,
Any gradient can b‘e used and also angles can be selected to a chosen number
of decimal places to support hypothesis testing. The program can also

produce graphics printouts of the results from the screen.

SNOOK in the classroom

The main line of an initial investigation is to find a relationship (given orally
or in writing, verbally or algebraically) between the height, the width and the
number of hits. The next problem is to find a suitable method of testing the
hypothesis (or hypotheses). Pupils should be encouraged to find their own
suitable test data; most incorrect hypotheses can be eliminated by choosing
heights and widths such as 2 by B or even 6 by 6. Pupils, quite correctly,
may well suggest that there is no single relationship but many sets of special
cases (as with square tables, for instance). This can promote much useful
discussion of the extent to which the problem is defined: can we expect a
solution? This version of the program will display results graphically only for
heights and widths less than ten, but the final results for other dimensions can
be obtained by pressing for numbers only (that is, no graphics).

Once a suitable relationship has been found, pupils may consider how many
different dimensions of table should be tested before this relationship can be
assumed to hold true for all dimensions. An attempt should be made to
discuss the difference between testing observable natural phenomena (as with

scientific experiments) and providing a tight mathematical proof.

60

SNOOK

In this example, in which the ball moves across a 7 by 4 table, the final
result displayed is that there were 11 hits and that the ball finished in the
bottom right-hand corner.

You are then invited to have another go:
Again Y/N?.

[f you press , you are returned to the initial height prompt; if you press
, you exit from the program, and are left with the '"READY': prompt. (I
you press accidentally, you can type RUN to start again.)

Options available in SNOOK

*

=R

*

ZIFE

==

(Options marked * are set automatically when the program is run.)

At the height, width prompt:

Digits - set the height or width as appropriate.

Evenly: sets the gradient to l.

Gently: sets the gradient to 1/2.

Steeply: sets the gradient to 2.

Angle: choose the angle for the ball's path.

Numbers only: results only are displayed; tables whose height or width exceeds
10 can be investigated.

Film mode: height and width are generated by the computer.
Keyboard control: height and width are typed at the keyboard
Help: display the list of options.

As the ball is moving:
Quit: the current problem.
Wait: stop the ball to allow discussion. Pressing again resumes the path.

Result: give the final result immediately, without completing the picture.

A typical screen display is shown in Figure Z.

Ideas and questions about CWORDS

You were asked 1o typs

eight hundred and seventy

L [R S (R

How many hundreds have you got 78

That’s right Mary

Figure 2

You were asked to typs
eight hundred and seventy
H LT VU
Now the units 70
Mow tvpe
zight bundred and seventy

in figures:- 870

Well done!

Figure 3

Ideas and questions about CWORDS

1. Are the teacher's notes included in the program necessary?

sufficient?

2. Is the program easy to use? For the teacher?

For the pupil?

25

Are they

3. Compare CWORDS with TABCAR. What do you think of the pupil-machine

interface?

4. Do you like the tutorial mode of operation?

this? If so, how?

Should the teacher deal with

5. What proportion of a pupil's time should be spent in using a computer in this

way?

6. What are the advantages and disadvantages of using a computer in this way as

compared with worksheets or a blackboard?

26

7.

i0.

CWORDS

Do you like the display of the teacher's record? Does it give sufficient
information?

Should the request for print-out be made at this stage rather than earlier?
Would large letters improve the program? Are there any other design
features you would like to see added?

Programmers may like to compare CWORDS and COUNTERS for similar
structure. If you delete lines 71 to 800 and 2500 to 27900, you are left with
= framework which can be wused in similar programs. Would such a framework

be of use to you?

SNOOK &

Design: Jon Coupland
Program: Jon Coupland
Source: ITMA, College of St. Mark & St. John, Plymouth

Program copyright (C) CET/College of St. Mark & St. John, 1982

SNOOK, in its reduced trailer version, runs on a Research Machines 380Z in
32K RAM with BASIC Version 5. It can be used on a disc- or cassette-based
system. The program uses high-resolution graphics if available, and low-
resolution graphics otherwise: it checks for itself when running.

An enhanced version of SNOOK is available separately.

Summary of SNOOK

SNOOK depicts a ball moving round a rectangular table until it falls into one
of the pockets placed at each corner.

The simulation encourages pupils to form hypotheses and to test these in a
systematic manner. The path traced by the ball can be displayed for tables
whose height and width, chosen each time by the user, are less than ten:

results for larger sizes can be obtained in a text mode.

Running SNOOK

1.

SNOOK is designed for classroom use: it provides help if any errors are made
and displays the range of options available at each stage.

The ball starts from the bottom left-hand corner. As it moves across the
table, the number of collisions with the sides are counted, and this count is
displayed. To ease the solution of problems, the count is initialised to 1 and
is also incremented when the ball falls into a pocket. As well as counting
the hits, the system shows which pocket the ball fell into at the end.

A typical run of SNOOK would be as follows:

Effect required Keys pressed

Load SNOOK into the computer
from disc or cassette (Wait for
'Ready': to be displayed)

Set SNOOK running

Select height 7

Select width 4

[CTOTAIE CsINE] o] K[RreT
[RUIN] RET

Draw the table and SPACEBAR
start the ball moving

Figure 1

58 PIRATES

4. Clues given as instructions in the form 'GO NORTH EAST'
. The skull and tree picture is displayed

Full version of PIRATES

See the published unit for the full version of PIRATES. As the drivechart
shows, this has many more options available than the trailer version, and

includes further information, detailed examples and teaching notes.

27

28

[([[@][«] []
M=) [l [0]

EERIE]

[E]

Commands in DICECOIN

Select any option by typing the appropriate keys in response to the prompt
symbol >>>>.

Simulations

One coin; frequency diagram

One coin; proportion of heads

Two coins: frequency of 2H, 1H, OH

Two coinsy frequency of HH, HT, TH, TT
One die; frequency diagram

One die; proportion of sixes

Two dice; frequency diagram

Options for a preselected simulation

Repeat

Repeat continuously (use to stop)
Change parameters

Go into tabular form

Pause/start

Other options
Give a list of options

End the program and return to BASIC

PIRATES ' ok

Design: Rosemary Fraser, David Lee, Colin Wells
Program: Colin Wells and Mike Allnut
Source: ITMA, College of St. Mark & St. John, Plymouth

Program copyright © College of St. Mark & St. John, 1982

PIRATES in its reduced trailer version runs on a Research Machines 380Z in
32Kk RAM with BASIC Version 5. It may be used on a disc- or cassette-based
system. It does not use high resolution graphics.

The full version of PIRATES is available separately.

Summary of PIRATES (trailer version)

PIRATES is a treasure hunt. The treasure is hidden by the computer at a
mesh point on an integral grid, and the treasure seeker approaches its hiding
place by supplying 'guesses' expressed in coordinates. Each new 'guess' yields

information which may be used in making next guess.

Running PIRATES

In this trailer version, the grid is two-dimensional. Its range in each
dimension can be set, and the computer is free to place the treasure
anywhere. There are two different ways (clues) in which the computer can
report the relation between the treasure's location and the current guess.

For each new search, the initial amount and type of treasure is selected by
the computer. During an investigation the pirates steal more of 'the loot'
with each unsuccessful guess. A search continued beyond ten tries will locate
an empty chest!

A number of themes emerge from this rich combination of search space and
clues. These include practice in the use of two-dimensional coordinate
representations of position; compass work; the plotting of data; the
construction of hypotheses; and the formulation of best strategies for an
investigation.

Because of the wide choice of puzzle settings afforded by the program's
flexible 'driving' system, the teacher may specify a mathematical activity
suitable for the pupils and may control the level of demand made of them by
the task.

For ‘example, the following Feature settings are vey suitable for young

children:

Both x and y range between 0 and 9
The treasure can be at any mesh point on the grid

Compass directions used to describe position relative to the treasure

26

Drivechart for PIRATES

1)

LAWmTRS

Thainpa4

705 hpwed

2

%

SA MMPA FA M0IP €4 Mo

94 adnjwed

viad
Jndvi

i

1 SYIp € %

725 hjawauind 59
S,
SHOISYIWIP T

S

na S

bvewa prn (@)

=1 0C)
I 3¥2
3 §5%
T SF3

/

. REgee
S tres
$§4TH
T AR Fam

4

SEIVYIG Fo wirm sy A3 i qquimD v aip T sy wwoys simas 5oy

ol
O,

.;asﬁ},;nuno
wals
o

I

Buprpre ®)
wnpy (@)

as Ki3vakiro 57
2ot

Hom [
qumﬁull

4 £Wajqoud
mav ¥,

{s‘aA [x]
o E

Y

DICECOIN :

Design: Alan Wigley
Program: Alan Wigley
Source: South Wolds School, Nottinghamshire

Program copyright © Alan Wigley, 1982

DICECOIN runs on a Research Machines 3807 in 32K RAM with BASIC

Version 5. It may be used on a disc- or cassette-based system. It does not

use high-resolution graphics.

Summary of DICECOIN

This program could be the basis of many interesting investigations into
probability. It simulates the throwing of dice and tossing of coins, and uses

graphs, histograms and tables to illustrate the patterns which emerge from

random events.
THROWING
TWO DICE
E -REAZC?:?’ e e 4w>!2#lﬁr>lf/\y!*(!m
& 708

TOTAL 2 3 4 & A L Sl o B £
FREG« 3 13 25 384 28 50 32 27 B3 & 7

s o Roab:

<D Z2FcomnT

Figure 1

30 DICECOIN

THROWING

& DIE

i 50 100 186
MO.OF TRIALSOMN)

Figure 2

Running DICECOIN

Load and run the program. Try these examples (Note that the computer

prints '>»>>' when it is ready for you to type a command.)

Computer: >z>>

You:

Simulation 3 shows how often you get 0, 1 or 2 heads when throwing two
coins. Before continuing, try to imagine what the histogram would look like.
At this point you might ask your class to write down what they think would

happen.

Computer: How many trials (<170)?

vou [MEIEEED

Computer: >»>>
You: IEI

The simulation is repeated, though the result will of course be slightly
different.

Computer: >>»2>

You:

55

54

FGP

Ideas and questions about FGP

L

3.

What are the merits of active and passive uses of this program? With passive
uses, pupils simply watch the screen. Active uses include 'guess the function'
games and fitting curves to data.

Algebraic notation teaches us to write 'y=ax', but in most programming
languages we must write 'y=axx'. This program allows either expression.
Which would you encourage pupils to use here?

Using the m option, plot 'y=x n' for all integers between -4 and +&4, Discuss

the significance of the common points.

DICECOIN in the classroom 31

The simulation is repeated continuously. This option of repeating many times
is useful in giving the class a feel for the variability which occurs. You can
let this display run for a long as you like. To stop it, hold down the |CTRL

key and type .

Computer: > > 22

You:

Computer: How many trials (<320)?

You: [1][o][c] reT

Computer: >>>>

You:

ends the program and returns control to BASIC.

DICECOIN in the classroom

With a class, an interesting sequence is to show 51, 52, $3 and S4, the four
experiments with coins. RBefore running each one, get the class to write down
what they expect to happen. Be sure to repeat each at least once to show
the random fluctuations which oceur. The fact that the three bars are
unequal in $3 may puzzle some pupils but S4 is a good basis for explaining
why.

Ideas and questions about DICECOIN

L

It is probably best to introduce this topic with some work on real dice or
real coins. However, most pupils prefer to use a computer if one is available.
Make sure that the class realize that a computer can behave in the same way
as a die or a coin.

Lessons with DICECOIN often seem more like physics lessons than
mathematics lessons. You can conduct the same 'experiment' a number of
times and get a slightly different result each time. Pupils will often see
patterns in the data which are spurious. (For example, when throwing dice, a
pupil may claim sixes always occur more frequently than other results.) The
best way to handle this is to run the experiment a few more times and see if

the same pattern recurs.

32

Drivechart for DIRECTED

(_

&
<
g
3
<
W
o
L L
N
r N
=
D
=
=

S
.§“§L ~
4
5 (3
< & W & /
e L
Fs AN
5 A e
B
8
3 3 R
E £ =
TR Y e}
& £
Ot %
N
(o)
eE
w B & 2
3 8 e e
3 \..\ng
:&0%0&0

Other /<egs

[@] Quits a problem and returs to Decision Pbint 1.

[7] When used at Decision Rint 1, this key retums you to the previous Settings.

@©) Extends the number [ine to include negative numbers.

® May be pressed at the input point to select a random number.

[H] May be pressed at ang stage to give help.

Options

R =

EE

c L =B =

=

XI[=]

FGP in the classroom 53

Angles - degrees or radians. When the program is loaded it will work with
degrees, but can be switched to radians by calling this option. Subsequent
uses of the option switch backwards and forwards between radians and
degrees. Invoking this option has no effect until a new function is defined.
Double replot. This does everything done by the replot option (see IE,
below), but also replots the current function which is unchanged.

End the program and return to BASIC.

Increment and superimpose. This option provides an easy way of displaying a
family of curves which vary along one parameter. Before the option can be
used, a graph must be displayed on the screen. The option will increment or
decrement a parameter and superimpose the new graph; it will continue doing
this until the space-bar is pressed.

Load and display data. This option allows point data stored in a disc file to
be displayed on the screen. Lines can be plotted on top of the data points
using the option. We have provided sample data file, WEIGHT, based on
work by D. Burghes and R. Blackford.

Display a list of these options on the screen.

Plot a graph. Clear the screen and plot a graph of the current function with
a choice of scale on each axis. Before a graph is plotted, the program asks
you for values of 'xmin', 'xmax', 'ymin' and 'ymax'. The key should
be pressed after each value. If is pressed without typing a value, the
previous value will be unchanged.

Quick graph. Clear the screen and plot a quick graph of the current function.
The x-axis is chosen automatically to show most or all of the graph.

Replot. This option replots whatever was originally plotted, without any of
the superimposed lines.

Superimpose a graph of the current function on top of the graph or graphs
shown on the screen.

Unchanged scales. Clear the screen and plot a graph of the current function
with the scales unchanged. For this option to work, a graph must be
displayed on the screen.

Variables. Set the letters used for the dependent and independent variables.
Initially these are y and x, but any letters may be used. This option has the
effect of cancelling the current function and clearing the screen.

Write the current function on the screen, with the values of any parameters.
Secrecy option. Calling this will cause most characters typed on the keyboard
to be echoed as asterisks on the screen. Subsequent calls switch between
normal echoing and echoing with asterisks.

Superimpose the first derivative of the current function on the graph or
graphs shown on the screen. The line is drawn in grey. Note that the
derivative does not become the current function, and there is no way of

plotting the second derivative.

52

FGP

at about 45 degrees. If it is not, experiment with the y scale until the angle
is satisfactory. Make a note of the range which works best, and use this
whenever you require equal scales.

'Guess the function' games can take a number of forms. A simple version
might start by displaying a straight line on the screen and inviting the class
tn discover its e;quatlon. Each guess could be superimposed on the screen, and
the first person to superimpose exactly on the original line wins.

With your class, start by typing so that they cannot read which
function you are entering. Then type y=x/2, and type again to cancel the
secrecy option. Plot the function using the ‘E option and choose scales
which will show gradients correctly.

MMow invite the class to guess the function. Suppose someone suggests
'v=2x'. Type this in and then type to superimpose this suggestion. It is
clearly wrong. Next someone might suggest 'y=x+2' and you can superimpose
this in the same way. If the screen gets cluttered with lines, type @ which
will replot your original line and the last suggestion which was superimposed.
Wnen someone finally suggests 'y=x/2' or 'y=.5x' or 'y=1/2x', this is exactly
superimposed on your original line.

To summarize, when '>»' appears in the bottom left-hand corner of the
screen, you can type either an option (such as @), or function (such as

y=log(x)), or an assignment (such as x=4). Whichever of these you type, you

must end with the key.

Functions

Functions are typed using a notation which is similar both to the BASIC
programming language and to normal algebraic notation. The program is quite
versatile and you will often find that the same function can be entered in

several different ways.

Assignments

An assignment statement with the independent variable (such as x=5) is used
to evaluate the function for that value. The program will reply with the
corresponding value of the dependent variable (such as y=3.474). When an

assignment is used with a parameter, it sets the parameter to that value.

DIRECTED .

Design: Trevor Greenslade, Falmouth School, Cornwall
Program: Trevor Greenslade, Colin Wells, Maggie Anderson
Source: ITMA, College of St. Mark and St. John

Program copyright (C) CET, 1982

DIRECTED runs on a Research Machines 3B0Z in 32K RAM with BASIC
Version 5. It may be used on a disc- or cassette-based system. It does not

use high-resolution graphics.

Summary of DIRECTED

DIRECTED uses the movement of a robot up and down a number line to help
in the teaching of addition, subtraction and directed numbers. This is the
first draft of the program which is under development - the final version will

be available as a complete teaching unit later.

Running DIRECTED

In DIRECTED, a robot moves up and down a number line. By following

simple rules, the robot provides the answer to a sum. The rules are Lhese:

Addition - face to the right of the line
Subtraction - face to the left of the line
Positive number - walk forwards

Negative number - walk backwards

The magnitude of the numbers in the sum is always less than 10 and the

teacher may select the type of sum that the robot does:

Addition sum, such as a + b. (This is the default setting.)

Subtraction sum, such as a - h.

Either addition or subtraction sum, chosen at random by the computer.

Sum with unsigned numbers, such as 3 + 2 or 4 - 3. (This is the default
setting.)

Sum with positively signed numbers only, such as "3 + "2 or *3 - *2,

Sum with negatively signed numbers only, such as "3 + "2 or "3 - 72,

Sum with a mixture of positive and negative numbers. The sign must be

chosen when the number is input.

When unsigned numbers are selected, only the positive side of the number

line is drawn on the screen, with an unsigned scale.

34

/

2]

& E

@

DIRECTED

When signed numbers are selected, the full number line from -18 to +18 is
drawn, with a signed scale.

There are two ways of operating the robot:

Demonstration mode. The computer asks for small numbers to be input.
After each input has been concluded with RET , the space-bar must be
pressed to move the robot. Thus the movement of the robot occurs in steps
under the control of the teacher. When the second number in the sum has
been entered, repeated depressions of the space-bar cause an 'equals' sign to
appear and the robot to 'walk' to the correct answer, which is then displayed
on the screen. (This is the default setting.)

Practice mode. When the first number has been input, the robot moves
automatically to the correct place on the line. When the second number has
been input, the robot does not move; instead, a question mark flashes on the
screen while the computer waits for an answer to the sum. If an incorrect
answer is entered, the robot stays where it is and 'says' a suitable phrase. If
the correct answer is entered, the robot finishes the sum and 'says' a

(different) suitable phrase.

There is a third mode of operation of the program, in which the robot and

number line do not appear.

Test mode. A number of randomly selected sums are produced on the screen,
with a suitable delay for pupils to write down the numbers. (No answer is

given.)
Other keys available in the program are as follows:

This key may be used when selecting a new type of problem or mode or
operation, and resets the program to the previous setting.

This key can be pressed at any time when a problem is being investigated,
and returns the program to Decision Point 1, 'Select features or RETURN to
continue’.

This key can be pressed at any point in the program and prints a list of the
keys that are available.

This key extends the short number line to include negative numbers and
produces a signed scale. It is only available when the settings are , @
and @, and the answer is less than 0. At this point the robot will walk off
the end of the number line and say 'Help'. When the line is extended by
pressing @, it says 'Thanks'.

This key may be pressed instead of a number key when entering any number,
and causes the computer to generate a number, at random.

This key finishes the program.

FGP in the classroom 51

If you try the last example, the program will ask you to provide values for a,
b and c¢ before the graph is plotted. When you use the @ option, your
graph will show the range on the x-axis from approximately -10 to 10. But

this range is not always satisfactory. Try typing:
y=sin(x)

and then type @ . (It is assumed that you will remember to press
after each line.) You may have expected to see a sine wave but because x is
in degrees you are seeing only a small part of a wave, namely that part lying
between -10 and 10 degrees. One possibility is to instruct the program to
work in radians rather than degrees. But suppose we want to keep degrees
but see more of the graph. To do this, type IE This will plot a graph
with your own choice of scales. Before the graph is plotted, four parameters
must be provided: the minimum value of x the maximum value of 26, the
minimum value of y, and the maximum value of y. Try asking for x from
-300 to 300, and y from -1 to 1. When the graph is plotted, give it a title

by typing .

Now try typing the quadratic :
x=axT2+bx+c

Notice how the '#4 ' sign is used for exponents. On the keyboard, ' 4" is the
symbnt on the top row of keys. Set a to 1, b to -2 and ¢ to -35, and type
@ for a quick graph. When the '>>' prompt returns, type:

b=-1

to change the value of b from -2 to -l Now type . This will
superimpose a graph on top of the graph shown on the screen. Try setting b
to other values and superimposing each graph. You should get a good idea of
how varying b affects the shape of the graph. You can, of course, change a
and ¢ as well, although it is usually best to vary one parameter at a time.

When you have superimposed a number of graphs, the screen will look quite
cluttered. To return to your original graph, and erase all the superimposed
lines, type IE' to replot.

Now type . The option superimposes the first derivative (dy/dx) of
the current function on the screen. As the current function is a quadratic,

the first derivative will be a straight line.

a linear function

If the program is used with second- or third-year secondary classes, it is often
useful to have equal scales on the two axes so that a gradient of one appears
on the screen as 45 degrees. Enter the function 'y=x', type @ , set

xmin=-10, xmax=10, ymin=-7 and ymax=7. On most screens the line should be

50 FGP

Figure 1

FGP in the classroom

Electronic blackboard

The program may be used as an 'electronic blackboard' whereby you can draw
functions quickly and accurately. When you have successfully loaded and run
the program, the 'y»' prompt should be in the bottom left-hand corner of the

screen, Type a simple function:
y=(x-B)(x+3)

You should end each line by pressing the key. Plot a graph of your
function by typing @ and pressing . This plots a 'quick graph': it is
quick because you do not have to decide the scale range you want; the
program makes this decision for you. When plotting has finished the '>>'
prompt will return.

Now type a different function and plot a graph of this in the same way.

Here are some functions you might try:

y=1/x
y=log(x)
y-(x-a)(x-b)}x-c)

DIRECTED in the classroom 35

DIRECTED in the classroom

Simple sum practice with unsigned numbers

With unsigned numbers, the program can provide a simple but motivating way
of practising sums, both addition and subtraction. In the 'demonstration'
mode, pupils may become familiar with the rules operating the robot. In the

'practice' mode, they are asked to work out their own answers.

Introducing directed numbers

By investigating the robot's rules using unsigned numbers, and by producing a
sum which takes the robot over the end of the line (3 - 5, for example),

directed numbers may be investigated and sums involving them practised.

Generating examples

The 'test' mode can be used to generate random examples of a certain type
of sum, such as unsigned subtraction, or subtraction with negative numbers
only. This provides a quick and easy way for the teacher to set examples

during a lesson.

Ideas and questions about DIRECTED

115 What are your views on the 'test' mode - should answers appear automatically
after a time lapse, or on pressing a key? Or should the computer remember
all the sums generated, and be able to 'replay' them with answers?

2. Can you think of any more ways in which the program could be used?

P This is a difficult topic - do you in fact find your pupils more competent with
directed number operations after working with DIRECTED, and some time
after?

36

DIRECTED

Figure 1

Lrput

T

a number 2=-10 and (+10 or

REG

YOUR FARDON

15

FGP g

Design: Richard Phillips, David Rooke and Alan Wigley
Program Richard Phillips
Source: ITMA/Shell Centre for Mathematical Education

Program copyright (C) CET, 1982

This program runs on a Research Machines 3B0Z in 32K RAM with disc BASIC
versions 5.0A, 5.0G or 5.0H, or with cassette BASIC versions 5.10 or 5.1E.
Read the note below before transferring from disc to cassette, or vice versa.

The program requires high-resolution graphics.

Note on FGP
When the program is first run the message ‘Please wait' appears on the
screen. The program is searching for the correct location in memory for
poking in the function strings. If it fails to find it, the message 'Unsuitable
BASIC interpreter' will appear. If you get this message check that you are
using BASIC version 5. If you are using this version, the message will also
appear if the program has become corrupted. This is unlikely but if it does
happen it is best corrected by reloading the program.

DC is a variable set in the first few lines of the program. With Version 5
disc BASIC, DC should be set to 200. But with Version 5 cassette BASIC, DC
should be set to 199.

Summary of FGP

This is a general-purpose program to plot Cartesian graphs of most easily
written functions. The user can choose the scales or opt for limited
automatic scaling. Functions are entered in normal algebraic notation.
Parameters can be changed, graphs can be superimposed and first derivatives
can be plotted. Besides its use as an telectronic blackboard', the program can

be used to play 'guess the function' games and to fit curves to point data.

48

Commands in FGP

FNERIFEREREREOHEHEEE

Ideas and questions about DIRECTED 37
After »», you may type:
either a function, such as _ :
TG G Y
y (X a}(x b) ; PRI R R A A Ao e T 3

or an assignment, such as

- -4 O 4+d 48 +12 +16 -1H ~12 -8 -4 O 44 +8 +12 +14
a=3 (sets a to 3)

x=2 (program responds with value of y)

or one of these options:

Angles - degrees or radians
Double replot
End and return to BASIC

Increment and superimpose

Input another number or B

Load and display data

Display option list

Plot graph with choice of scales

Quick graph, automatic scaling

Replot

Superimpose graph

Plot graph with unchanged scale

Set dependent and independent variables
Write function on screen

Echo asterisks or echo normally

Superimpose first derivative

SFOT OMN EARYS

38

Drivechart for ERGO

infermation,

if mgucsted

=

-
T~

Simple. probiew. |

N
==

<
%

J
<

A

“Ress..." 5 [] Difficult problem J
[E] End } > @
<£> (i
2l ap .
Hashinj [D] Down uﬂﬁmsf;ed _/
cursor on 2 Left N
screen [R] Right Findsuen N

enter number J

Ideas and questions about EUREKA 47

For the next stage, the television or monitor is switched off and everyone
is asked to think of a different sequence of events. There are many
possibilities. For example, the man may get into the bath before the taps are
turned on, or he may let the bath overflow. Everyone is asked to write down
their sequence in words and then to sketch a graph on a separate piece of
paper. When this is done, the children are asked to swap graphs and try to
interpret what sequence of events is shown on their neighbour's graph.
Finally, the computer screen is switched on again, and a number of children
are invited to verify their graphs by typing the events themselves at the
keyboard.

A common mistake in all graph work is for children to confuse graphs with
pictures. Be sure to emphasize the differences between the graph and the
picture above it, and look out for signs of confusion - for example, a child

who when asked to sketch a graph insists on drawing taps on it!

Ideas and questions about EUREKA

¥

2.

3.

Give the class a graph (such as Example 6) and ask them to write a short
story about it.

What difference would it make if you plotted water volume rather than water
level? Does the man ever affect water volume? .

With a small remedial class, everyone could take a turn at experimenting with
the program. Get each child to recall their sequence of events using the
graph as a reminder.

46

EUREKA

Press to restart the program and this time press the number @ , then
the letter @ , then the key. The @ selects pre-stored example
number 2, and the @ instructs EUREKA to display the graph only. Think
about how this could serve as a useful basis for classroom discussion.

Press to end the program. This returns you to the BASIC interpreter,

but since EUREKA is still present in the computer's memory, you can run it

again simply by typing @ .

EUREKA in the classroom

Before trying the program with a class, it is important for you to understand
the program's limitations. For example, filling and emptying a real bath
would not produce straight lines on the graph. It is especially important to
realise that the gradients produced by filling and emptying the bath are
unchanged when the man is put in, so you should avoid this comparison when
discussing gradients with the class. If you wish to discuss gradients it is best
to compare the bath emptying with the taps on and off. It is not
recommended that you discuss the program's limitations with a class unless
their understanding of graphs is especially good.

There are several ways of using EUREKA in a lesson. A typical lesson is
described here together with some possible variants.

The program is introduced to the class by working through the normal
sequence of events when someone has a bath: plug in, taps on, taps off, man
in, man out, plug out. This is done with relatively little talk so that the
class can concentrate on the visual images.

At the end of the sequence, the teacher presses ® to freeze the action
and discusses what is happening. This includes an analysis of the graph, with
the teacher asking questions about each step.

After this introduction, the teacher goes on to some interpretation exercises
using the examples built into the program. As Example 1 is very similar to
the first example, the teacher starts with Example 2. Typing @ @
and pressing displays the graph of Example 2 without the picture. The
class are asked to explain what is happening. FExplanations at various levels
are encouraged. For example, 'the level of water has dropped suddenly', 'the
man has got out', and 'he has had to get out to answer the telephone' are all
different facets of interpreting the same event on the graph.

When the class has agreed about what is happening in the graph displayed
by Example 2, the teacher types ® and presses to check this
interpretation by watching the graph and picture together. When events reach
a point which has caused some confusion, the teacher freezes the action to
gain more time to talk. Some of the other examples are treated in the same
way; it is strongly recommended that Example 6 should be used at some point

in the lesson.

ERGO E

Design: Richard Phillips
Programs: Richard Phillips
Source: ITMA/Shell Centre for Mathematical Education

Program copyright © CET, 1982

ERGO runs on a Research Machines 380Z in 32K RAM with BASIC Version 5.
It may be used on a disc- or cassette-based system. It does not use high-

resolution graphics.

Summary of ERGO

Twenty-five numbers, arranged in a five-by-five grid, form a pattern; only two
of them are shown on the screen. The task is to discover the pattern and so
fill in the missing numbers. The program is intended for the lower half of
the secondary school. Each problem is chosen at random from more than
1000 patterns. If the computer judges that you have discovered a pattern, it
will save you work and complete the problem for you. There are two levels
of difficulty.

* * *

* * 3 k3 *
* ¥ *
S - *
*® ¥ * * ¥

e

R e

e

A

Figure 1

40

ERGO

Running ERGO

These are the instructions displayed on the screen:

The computer will think of 25 numbers arranged in a five-by-five square. The
numbers form some kind of pattern and your task is to discover what they
are. All the numbers lie between 1 and 999 inclusive.

Your position in the square is shown by a blinking spot. You can move
about by typingfm‘ up,@for down,for left, andlElfor right.

To guess a number, type it in and press the key. If you are
wrong, either try again or move to another position.

To help you, two numbers are filled in at the start. You score points for
getting numbers right first time.

Press[S |to start,[E]to end.

ERGO in the classroom

ERGO was designed for use by individuals and small groups, but it can be
used with a whole class. Although you should familiarise yourself with the
program, the best strategy with the class is to pretend you know no more
about the program than they do. Work round the class getting pupils to guess
numbers. Allow wild guesses at the start, but gradually get them to think
about the best strategy to use. Switch the computer off and get them to
play the game in pairs, each taking turns at being computer and player.

There is a useful secret option in the program. If you want to quit and let
the machine finish off the problem, hold down the key and type .

Ideas and questions about ERGO

L.

The patterns used in ERGO are of a limited kind. When pupils play the game
in pairs, they often devise more interesting and more complicated rules than
those used by the program. If you want to introduce different patterns
yourself, you could play the game on the blackboard after the class have seen
it on the computer.

The program uses positive numbers only. You might like to present to the
class a grid which includes negative numbers, but in which the two starting
numbers are positive.

Try teaching two lessons with different classes. In one, play ERGO on the
computer; in the other, play it on the blackboard setting the questions
yourself. Analyse the roles you play and the tasks you carry out in these

contrasting lessons.

ZEHOOEA®

0
EeERE®

*

Running EUREKA 45

the man get in and out a dozen times. However, the man will not always
sing. For this to work he must be in the bath with the taps off and the plug
in. Once you start him singing, you will find that none of the other
commands work until you silence him by pressing @ :

Press ‘the key (the same key as , but don't use) to
restart the program. Try working through a different sequence of events.
Alter the sequence to your own taste, and to create changes in the graph
which you think might stimulate discussion in a classroom. Notice how the
graph faithfully follows the actions you perform. It is interesting to compare
the gradients which are produced by the bath filling, by it emptying, and by it
emptying with taps left on.

Press ® to 'freeze' the action. Graph plotting will stop, and any
animation in the upper part of the screen will be frozen. Press ® a second
time to unfreeze the action, and the program will continue as if nothing had
happened. This key allows you to hold the display constant during classroom
discussion.

Press for help in using the program; it will remind you which keys you
can press at the stage you have reached.

Here is a summary of the commands you have used so far:

Plug in or plug out

Taps on or taps off

Man in or man out

Start singing or stop singing
Freeze or unfreeze

Restart the program

Give help

Press to restart the program again. The words 'Press RETURN to
start' should be on the screen. At this stage there are a number of hidden
options that you can select by pressing keys before pressing :

Examples 1 to 6

Replay events

Keyboard control of events

Picture only

Graph only

Both graph and picture

If you press none of these but press only, you will get the two options

marked with an asterisk (*). These options are said to operate 'by default'.
Here are two examples to explain some of these options. First press the

number and then press . EUREKA will now display the first of

six pre-stored examples. Press ® to freeze or unfreeze this pre-stored

sequence.

44 EUREKA

wha wha
wha

wo wha

wha wha

wha wha

R S R e e s

Minutes

Y) Man out.
Yy Man in.
)y Sings

¥

Figure 1
Running EUREKA

Load and run EUREKA.

When you see the message 'Press RETURN to start', press the key
and look at the screen. ‘[n the top part there is a picture of a bath; in the
bottom part there is a graph. Watch the graph for a few moments and you
will see that it is being drawn continuously. Every two seconds an extra
point is plotted on the graph to show the current level of water in the bath.

Press this sequence of keys, pausing for a few second after each one to see
its effect. You do not need to press after any of these characters.

® @ (Wait at least 15 seconds) ® @ @ @ @ ®

You should have discovered that @ turns the taps on and off, ® puts
the plug in and pulls it out, @ puts in the man and takes him out, and @
starts and stops him singing.

Spend a few moments experimenting with these keys. Unlike a real bath,
you can do no damage by letting the water overflow! The keys can be

pressed any number of times and in any order, so you may, if you wish, make

41

42

Drivechart for EUREKA

1 \J
X
! ®) Picture enl
Y
" (D-(©) examples r'fsé’art‘]—»—/
Fress @ R ,a; i *@ Graph only
Both picture
J:T;Uiﬁi *@ Keyboard control and; o accept
Star
A

AN

{

Peture ﬂﬁ"'i/—[& A m‘/‘"ﬁm’} {1 m*m]_"/
or replay ¥ :
or
graph -) i
@ Taps (/off)
© e infut) A
™ Man (in/oﬂf)
@ Sf}ymj (sf’arf' /Sh’P)
kg(bgard F) Freeze /:mfr‘eez.:
controf ; ’
msfart‘} > F
5
Notes:

At any stage in the program,

gives Help,

returns to Decision Pornt 7,

[E] Ends the program and returas fo BAS/C.
To start the man singing, he must be in the bath with the plug in and the taps off. Oxce
ke is singing, the only optious which work are (3, ®, [€], [A] aud [7].

EUREKA “’

Design: Hugh Burkhardt, Richard Phillips and Malcolm Swan
Program: Richard Phillips
Source: Shell Centre for Mathematical Education/ITMA

Program Copyright © Shell Centre for Mathematical Education, University of
Nottingham, 1982

EUREKA runs on a Research Machines 380Z in 32K RAM with BASIC Version
5. It may be used on a disc- or cassette-based system. It does not require

high-resolution graphics.

Summary of EUREKA

EUREKA is designed to teach elementary graph interpretation. Under the
user's control, it illustrates what happens to the water level in a bath when
the bath is filled, when a man gets in, and when the plug is pulled out.
These operations are shown pictorially in the upper part of the screen, while
in the lower part a graph is plotted of water level against time.

The program can be used to teach a number of aspects of graph
interpretation and sketching. The idea of gradients can be discussed by
considering the different gradients which result from filling the bath, from
emptying it, or from emptying it with the taps left on. Step functions are
illustrated by the man entering and leaving the bath.

